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Tuning Parameters and Predictive Models

Some machine learning/predictive models have specific “knobs” to control
over-fitting

neighborhood size in nearest neighbor models is an example

the number if splits in a tree model

Often, poor choices for these parameters can result in over-fitting and
there may not be an analytical method for estimating their value.

For example, the next slide shows a data set with two predictors. We want
to be able to produce a line (i.e. decision boundary) that differentiates two
classes of data.
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5–Nearest Neighbor Models
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Grid Search and Resampling

The typical way one might determine appropriate values of the tuning
parameter(s) is to use some form of resampling, e.g. cross–validation or
the bootstrap.

Resampling can take the training set data and get reasonable assessments
of how well the model would work on future samples.

The user could define a candidate set of tuning parameter combinations
and evaluate each using resampling, i.e. a grid search.
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Grid Search Resampling Algorithm

D = Training set

B = Number of resamples

i = Resampling iteration i

Ri = Resampled data set

Ti = Resampled holdout set

p = Number of tuning settings

Θ = Tuning parameter grid

θj = Tuning parameter value

Qij = Performance estimate

f̂(D; θ) = Trained model

Define parameter set Θ;
for i = 1 . . . B do

Generate Ri and Ti;
for j = 1 . . . p do

Fit f̂ij(Ri; θp);
Predict Ti to estimate Qij ;

end

end

Calculate Q̂1 . . . Q̂p;
Determine θopt;

Fit the final model f̂(D; θopt);
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Mutagenicity Data

Kazius et al. (2005) created a data set that attempts to predict the
potential for a chemical to cause mutagenicity.

They labeled 4,335 compounds as either mutagen or non–mutagen and we
generated 830 descriptors of molecular structure for each compound as
predictors.

Examples of the descriptors used in these analyses are atom counts,
molecular weight, surface area and other measures of size and charge.

Using a predictive model, future compounds can be assessed for their
potential toxicity based on these properties.
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Mutagenicity Data

A support vector machine (SVM) model using a radial basis function was
used to predict mutagenicity.

The method of Caputo et al. (2002) was used to estimate the radial basis
function kernel parameter σ analytically. so that we only tune over the
SVM cost parameter.

Cost was varied over 21 values: Θ =
{

2−2, 2−1.5 . . . , 28
}

Simple bootstrap resampling was used to tune the model with B = 50.

Using “pick–the–winner”, the optimal value was estimated to be
θopt = 21.5.
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Basic Resampling using caret

library(caret)

ctrl <- trainControl(method = "boot", number = 50)

fit <- train(x = predictors, y = outcome,

method = "svmRadial",

preProc = c("center", "scale"),

tuneLength = 21,

trControl = ctrl)
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Model Tuning Results
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Futility Analysis

Why should we wait until all B × p = 1, 050 models are fit before we
eliminate parts of Θ?

We might consider a tuning parameter as futile if it is unlikely to have
optimal performance.

At some point during resampling (Bmin), we can look at the data to
potentially discard candidate values of Θ.

We extend the work of Shen et al. (2011) to analyze the estimated Qij . A
manuscript is also in review that also includes a novel method of assessing
futility.
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Generalized Linear Models for Measuring Futility

The resampled performance estimates are analyzed using a generalized
linear model:

Qjk = µ+ τj + εik

where εik ∼ N(0,Σ) with Σk = σ2(1 − ρ)Ipi + σ2ρJpi .

The grand mean µ is associated with the current best tuning parameter at
iteration k so that the τj estimate the loss of performance for setting j.

To estimate futility, a one–sided upper confidence interval for the τ̂j are
constructed.

If the interval includes zero, setting j is resampled on the next iteration.
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Adaptive Resampling Algorithm

Define parameter set Θ;
for i = 1 . . . B do

Generate Ri and Ti;
for j = 1 . . . pi do

Fit f̂ij(Ri; θpi
);

Predict Ti to estimate Qij ;

end
if i > Bmin and pi > 1 then

Calculate Q̂1 . . . Q̂pi ;
Conduct futility analysis;
Remove parameter settings;
Update pi;
if pi = 1 then set θopt;

end

end
if pi > 1 then Determine θopt;

Fit the final model f̂(D; θopt);

Using this procedure, the
same optimal settings were
found by computing only
28.5% of the possible
models resulting in a
speed–up of 3.5.

M Kuhn (Nonclinical Statistics) Adaptive Resampling July 2, 2014 12 / 25



At Bmin = 5 and α = 0.05
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Basic Resampling using caret

library(caret)

ctrl <- trainControl(method = "boot", number = 50)

fit <- train(x = predictors, y = outcome,

method = "svmRadial",

preProc = c("center", "scale"),

tuneLength = 21,

trControl = ctrl)
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Adaptive Resampling using caret

library(caret)

ctrl <- trainControl(method = "adaptive_boot", number = 50)

fit <- train(x = predictors, y = outcome,

method = "svmRadial",

preProc = c("center", "scale"),

tuneLength = 21,

trControl = ctrl)
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The “Sub–Model” Trick

There are some models in R where we don’t have to execute the model
function for each possible sub–model (e.g. gbm, plsr).

The current complete set includes model %in% c("bagEarth",

"blackboost", "bstLs", "bstSm", "bstTree", "C5.0", "C5.0Cost",

"cubist", "earth", "enet", "foba", "gamboost", "gbm", "glmboost",

"glmnet", "kernelpls", "lars", "lars2", "lasso", "lda2",

"leapBackward", "leapForward", "leapSeq", "LogitBoost", "pam",

"partDSA", "pcr", "PenalizedLDA", "pls", "relaxo", "rpart",

"rpart2", "rpartCost", "simpls", "superpc", "widekernelpls")

So far, timing tests still show improvments in many of these models by
using adaptive resampling.
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Parallel Processing

How does parallel processing
affect this process?

Does it obviate the gains
one would get from adaptive
resampling?

When i < Bmin or pi = 1,
resamples can be run
parallel.

Within a given resample,
surviving models can always
be run in parallel.

Define parameter set Θ;
for i = 1 . . . B do

Generate Ri and Ti;
for j = 1 . . . pi do

Fit f̂ij(Ri; θpi
);

Predict Ti to estimate Qij ;

end
if i > Bmin and pi > 1 then

Calculate Q̂1 . . . Q̂pi ;
Conduct futility analysis;
Remove parameter settings;
Update pi;
if pi = 1 then set θopt;

end

end
if pi > 1 then Determine θopt;

Fit the final model f̂(D; θopt);
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Adaptive Resampling in Parallel

Resampling Method Time (hr)

Complete Sequential 40.5
Adaptive Sequential 11.6
Complete Parallel 14.2
Adaptive Parallel 3.6

Adaptive only speed-up: 3.5

Parallel only speed-up: 2.9

Adaptive and parallel speed–up: 11.3
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Adaptive Resampling using caret Sequentially (again)

library(caret)

ctrl <- trainControl(method = "adaptive_boot", number = 50)

fit <- train(x = predictors, y = outcome,

method = "svmRadial",

preProc = c("center", "scale"),

tuneLength = 21,

trControl = ctrl)
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Adaptive Resampling using caret in Parallel

library(doMC) ## or whatever "do" package you like

registerDoMC(cores = 6)

library(caret)

ctrl <- trainControl(method = "adaptive_boot", number = 50)

fit <- train(x = predictors, y = outcome,

method = "svmRadial",

preProc = c("center", "scale"),

tuneLength = 21,

trControl = ctrl)
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Summary

If the training set size is big enough, adaptive resampling can generate
quality models.

If the computationally complexity is large, it can also generate significant
speed–ups

Parallel processing does not obviate the gains generated from adaptive
resampling

In the short term, this code will be included in the caret package.

The package contains another method for determining futility based on a
Bradley–Terry model.
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Does It Work? Simulation Results

(a) Generalized Least Squares
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More Simulation Results

(a) Generalized Least Squares
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