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Tree–based Regression Models

Classificaiton and Regression Trees (CART) are a framework for machine
learning models.

A CART searches through each predictor to find a value of a single
variable that best splits the data into two groups.

typically, the best split minimizes the RMSE of the outcome in the
resulting data subsets.

For the two resulting groups, the process is repeated until a hierarchical
structure (a tree) is created.

in e↵ect, trees partition the X space into rectangular sections that
assign a single value to samples within the rectangle.

To demonstrate, we’ll walk through the first two iterations of this process.
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Example Data

The data used to illustrate the models are sale prices of homes in
Sacramento CA.

The original data were obtained from the website for the SpatialKey
software. From their website:

The Sacramento real estate transactions file is a list of 985 real

estate transactions in the Sacramento area reported over a

five-day period, as reported by the Sacramento Bee.

Google was used to fill in missing/incorrect data.
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Example Data

> library(caret)

> data(Sacramento)

> str(Sacramento, vec.len = 1)

'data.frame': 932 obs. of 9 variables:

$ city : Factor w/ 37 levels "ANTELOPE","AUBURN",..: 34 34 ...

$ zip : Factor w/ 68 levels "z95603","z95608",..: 64 52 ...

$ beds : int 2 3 ...

$ baths : num 1 1 ...

$ sqft : int 836 1167 ...

$ type : Factor w/ 3 levels "Condo","Multi_Family",..: 3 3 ...

$ price : int 59222 68212 ...

$ latitude : num 38.6 ...

$ longitude: num -121 ...
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Example Data

A random split was used to create a test set with 20% of the data. The
data are:

> set.seed(955)

> in_train <- createDataPartition(log10(Sacramento$price), p = .8, list = FALSE)

>

> training <- Sacramento[ in_train,]

> testing <- Sacramento[-in_train,]

> nrow(training)

[1] 747

> nrow(testing)

[1] 185
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Training in Blue, Testing in Red
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First Split of a CART Tree

sqft

1

< 1594 � 1594

Node 2 (n = 426)

4.5

5

5.5

6

Node 3 (n = 321)

4.5

5

5.5

6

Kuhn (Pfizer R&D) Cubist 7 / 48



Second Split
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Full Tree
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The Good and Bad of Trees

Trees can be computed very quickly and have simple interpretations.

Also, they have built-in feature selection; if a predictor was not used in any
split, the model is completely independent of that data.

Unfortunately, trees do not usually have optimal performance when
compared to other methods.

Also, small changes in the data can drastically a↵ect the structure of a
tree.

This last point has been exploited to improve the performance of trees via
ensemble methods where many trees are fit and predictions are aggregated
across the trees. Examples are bagging, boosting and random forests.

Trees may not fit the data well in the extremes of the outcome range.
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Poor Fits in the Tails
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Model Trees

The model tree approach described in Quinlan (1992) called M5, which is
similar to regression trees except:

the splitting criterion is di↵erent,

the terminal nodes predict the outcome using a linear model (as
opposed to the simple average), and

when a sample is predicted, it is often a combination of the
predictions from di↵erent models along the same path through the
tree.

The main implementation of this technique is a “rational reconstruction”
of this model called M5’, which is described by Wang and Witten (1997)
and is included in the Weka software package.
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Model Tree Structure

When model trees make a split of the data, they fit a linear model to the
current subset using all the predictors involved in the splits along the path.

This process proceeds until there are not enough samples to split and/or
fit the model.

A pruning stage is later used to simplfy the model.

Note: Many of the models here are fit with and without encoding
categorical predictors as dummy variables. Tree– and rule–based models
usually do not require dummy variables.
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Model Tree Structure
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Model Tree Predictions

When a sample is predicted, all of the linear models along the path are
combined using:

bypar =
nkid bykid + c bypar

nkid + c

bykid is the prediction from the child node
nkid is the number of training set data points in the child node
bypar is the prediction from the parent node
c is a constant with a default value of 15.

For the example data, the unpruned model had 81 paths through the tree
and the pruned version used 2 paths.
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From Trees to Rules

Tree–based models consist of one or more nested if-then statements for
the predictors that partition the data.

Within these partitions, a model is used to predict the outcome.

For example, a very simple tree could be defined as:

if >= 1.7 then

| if X2 >= 202.1 then Y = 1.3

| else Y = 5.6

else Y = 2.5
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From Trees to Rules

Notice that the if-then statements generated by a tree define a unique
route to one terminal node for any sample.

A rule is a set of if-then conditions (possibly created by a tree) that have
been collapsed into independent conditions.

For the example above, there would be three rules:

if X1 >= 1.7 & X2 >= 202.1 then Y = 1.3

if X1 >= 1.7 & X2 < 202.1 then Y = 5.6

if X1 < 1.7 then Y = 2.5

Rules can be simplified or pruned in a way that samples are covered by
multiple rules, eg.

if X1 >= 1.7
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Rule–Based Models

One path to a terminal node in an unpruned model is

sqft <= 1594 &

zip not in {z95631, z95833, z95758, z95670, 45 others} &

beds <= 2.5 &

latitude > 38.543 &

latitude > 38.615 &

latitude > 38.637 &

latitude <= 38.688 &

latitude <= 38.673

We can convert our model tree to a rule–based model. Many conditions
can be simplifed
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“Separate and Conquer” Approach to Rules

First, an initial model tree is created and only the rule with the largest
coverage is saved from this model.

The samples covered by the rule are removed from the training set and
another model tree is created with the remaining data.

Again, only the rule with the maximum coverage is retained.

This process repeats until all the training set data has been covered by at
least one rule.

A new sample is predicted by determining which rule(s) it falls under then
applies the linear model associated with the largest coverage.

For our data, the unpruned model has 81 and can be reduced shown to
two rules based on sqft  1594.
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An Example of a Terminal Node Model

log10(price) =

- 6.3388

- 0.0032 * city in {GALT, POLLOCK_PINES, ..., GRANITE_BAY}
+ 0.0209 * zip in {z95820, z95822, z95626, ..., z95746}
+ 0.0015 * zip in {z95673, z95832, z95621, ..., z95746}
+ 0.0098 * zip in {z95631, z95833, z95758, ..., z95746}
+ 0.0091 * zip in {z95818, z95608, z95662, ..., z95746}
+ 0.0033 * zip in {z95814, z95765, z95667, ..., z95746}
+ 0.0005 * beds

+ 0.0001 * sqft

+ 0.3097 * latitude

+ 0.0056 * longitude
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E↵ect of Smoothing and Pruning Results
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Model Trees in R

> library(RWeka)

> model_tree <- M5P(log10(price) ~ ., data = training,

+ ## Make the minimum number of instances per

+ ## leaf higher than the default of 4

+ control = Weka_control(M = 15))

>

> model_tree_unpruned <- M5P(log10(price) ~ ., data = training,

+ control = Weka_control(M = 15, N = TRUE))

Note that the formula method is used but factors are not converted to
dummy variables.
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Tuning Model Trees in R

> ctrl <- trainControl(method = "repeatedcv", repeats = 5)

>

> mt_grid <- expand.grid(rules = "Yes",

+ pruned = c("No", "Yes"),

+ smoothed = c("No", "Yes"))

>

> ## will use dummy variables:

> set.seed(139)

> mt_tune_dv <- train(log10(price) ~ ., data = training,

+ method = "M5",

+ tuneGrid = mt_grid,

+ trControl = ctrl)

> ## will not:

> set.seed(139)

> mt_tune <- train(x = training[, -7], y = log10(training$price),

+ method = "M5",

+ tuneGrid = mt_grid,

+ trControl = ctrl)

Setting the seed prior to each call ensures that the same resamples are
used.
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Cubist

Some specific di↵erences between Cubist and the previously described
approaches for model trees and their rule–based variants are:

the specific techniques used for linear model smoothing, creating rules
and pruning are di↵erent,

an optional boosting–like procedure called committees can be used,
and

the predictions generated by the model rules can be adjusted using
nearby points from the training set data.

We are indebted to the work of Chris Keefer, who extensively studied the
Cubist source code to figure out the details.
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Cubist

Cubist does not use the Separate and Conquer approach to creating rules
from trees.

A single tree is created then “flattened” into a set of rules.

The pruning and smoothing procedures are similar to those implemented
in M5, but . . .
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Smoothing Models in Cubist
Cubist has a di↵erent formula for combining models up the tree:

bypar = a⇥ bykid + (1� a)⇥ bypar
where

a =

V ar(bypar)� b

V ar(bypar) + V ar(bykid)� 2b

b =
S11 � 1

nS1S2

n� 1

S1 =

nX

i=1

(yi � byipar)

S2 =

nX

i=1

(yi � byikid)

S12 =

nX

i=1

(yi � byikid)(yi � byipar)
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Cubist in R

> library(Cubist)

> cb <- cubist(x = training[, -7], y = log10(training$price))

> ## To see the rules + models

> summary(cb)
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Cubist Base–Model Results

A basic cubist model resulted in 8 rules. For example:

Rule 1: [58 cases, mean 4.980517, range 4.477121 to 5.523746, est err 0.152796]

if zip in {z95621, z95626, z95660, z95673, z95683, z9581, z95817, z95820,

z95822, z95823, z95824, z95826, z95827, z95828, z95832, z95838

z95841, z95842, z95843} and

beds <= 2 then

outcome = 7.944631 + 0.323 beds + 4e-05 sqft + 0.03 longitude

Rule 2: [126 cases, mean 5.200466, range 4.788875 to 5.662758, est err 0.090147]

if zip in {z95626, z95660, z95683, z95815, z95823, z95824, z95827, z95832,

z95838, z95841} and

beds > 2 then

outcome = 8.524561 - 0.056 beds + 0.000342 sqft + 0.03 longitude + 0.003 baths
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Plotting the Splits

> dotplot(cb)
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Plotting the Slopes

> dotplot(cb, what = "coefs")
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Cubist Committees

Model committees can be created by generating a sequence of rule–based
models (similar to boosting).

The training set outcome is adjusted based on the prior model fit and then
builds a new set of rules using this pseudo–response.

Specifically, the kth committee model uses an adjusted response:

yi(k) = 2yi(k�1) � byi(k�1)

Once the full set of committee models are created, new samples are
predicted using each model and the final rule–based prediction is the
simple average of the individual model predictions.

> cb <- cubist(x = training[, -7], y = log10(training$price), committees = 17)
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Committee Results
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Neighbor–Based Adjustments

Cubist has the ability to adjust the model prediction using samples from
the training set (Quinlan 1993).

When predicting a new sample, the K most similar neighbors are
determined from the training set.

by =

1

K

KX

`=1

w`

⇥�
t` � bt`

�
+ by

⇤

t` is the observed outcome for a training set neighbor,
bt` is the model prediction of that neighbor and
w` is a weight calculated using the distance of the training set neighbors
to the new sample.

> predict(cb, newdata = testing, neighbors = 4)
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Tuning Model Trees in R

> cb_grid <- expand.grid(committees = c(1:35), neighbors = c(0, 1, 3, 5, 7, 9))

> set.seed(139)

> cb_tune_dv <- train(log10(price) ~ ., data = training,

+ method = "cubist",

+ tuneGrid = cb_grid,

+ trControl = ctrl)

> set.seed(139)

> cb_tune <- train(x = training[, -7], y = log10(training$price),

+ method = "cubist",

+ tuneGrid = cb_grid,

+ trControl = ctrl)

> ggplot(cb_tune) ## to see the profiles
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Results with Neightbor Correction
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Comparisons with Other Models
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Results with APM ’s Concrete Data Analysis
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Results with APM ’s Solubilty Data Analysis
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Backup Slides



CART Profiles
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Boosted Tree Profiles
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Random Forest Profiles
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MARS Profiles
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SVM (RBF) Profiles using Random Search
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SVM (Poly) Profiles using Random Search
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KNN Profiles
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code to R.
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